Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.118
Filter
1.
Eur J Med Res ; 29(1): 236, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622715

ABSTRACT

Glycolysis-related metabolic reprogramming is a central hallmark of human cancers, especially in renal cell carcinoma. However, the regulatory function of glycolytic signature in papillary RCC has not been well elucidated. In the present study, the glycolysis-immune predictive signature was constructed and validated using WGCNA, glycolysis-immune clustering analysis. PPI network of DEGs was constructed and visualized. Functional enrichments and patients' overall survival were analyzed. QRT-PCR experiments were performed to detect hub genes' expression and distribution, siRNA technology was used to silence targeted genes; cell proliferation and migration assays were applied to evaluate the biological function. Glucose concentration, lactate secretion, and ATP production were measured. Glycolysis-Immune Related Prognostic Index (GIRPI) was constructed and combined analyzed with single-cell RNA-seq. High-GIRPI signature predicted significantly poorer outcomes and relevant clinical features of pRCC patients. Moreover, GIRPI also participated in several pathways, which affected tumor immune microenvironment and provided potential therapeutic strategy. As a key glycolysis regulator, PFKFB3 could promote renal cancer cell proliferation and migration in vitro. Blocking of PFKFB3 by selective inhibitor PFK-015 or glycolytic inhibitor 2-DG significantly restrained renal cancer cells' neoplastic potential. PFK-015 and sunitinib could synergistically inhibit pRCC cells proliferation. Glycolysis-Immune Risk Signature is closely associated with pRCC prognosis, progression, immune infiltration, and therapeutic response. PFKFB3 may serve as a pivotal glycolysis regulator and mediates Sunitinib resistance in pRCC patients.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Sunitinib/pharmacology , Sunitinib/therapeutic use , Multiomics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Prognosis , Tumor Microenvironment , Phosphofructokinase-2/genetics , Phosphofructokinase-2/metabolism
2.
Front Immunol ; 15: 1374728, 2024.
Article in English | MEDLINE | ID: mdl-38660294

ABSTRACT

In the advanced renal cell carcinoma (RCC) scenario, there are no consistent biomarkers to predict the clinical benefit patients derived from immune checkpoint blockade (ICB). Taking this into consideration, herein, we conducted a retrospective study in order to develop and validate a gene expression score for predicting clinical benefit to the anti-PD-1 antibody nivolumab in the context of patients diagnosed with advanced clear cell RCC enrolled in the CheckMate-009, CheckMate-010, and CheckMate-025 clinical trials. First, a three-gene expression score (3GES) with prognostic value for overall survival integrating HMGA1, NUP62, and ARHGAP42 transcripts was developed in a cohort of patients treated with nivolumab. Its prognostic value was then validated in the TCGA-KIRC cohort. Second, the predictive value for nivolumab was confirmed in a set of patients from the CheckMate-025 phase 3 clinical trial. Lastly, we explored the correlation of our 3GES with different clinical, molecular, and immune tumor characteristics. If the results of this study are definitively validated in other retrospective and large-scale, prospective studies, the 3GES will represent a valuable tool for guiding the design of ICB-based clinical trials in the aRCC scenario in the near future.


Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Immune Checkpoint Inhibitors , Kidney Neoplasms , Nivolumab , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/immunology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/mortality , Kidney Neoplasms/immunology , Immune Checkpoint Inhibitors/therapeutic use , Male , Retrospective Studies , Female , Biomarkers, Tumor/genetics , Prognosis , Middle Aged , Nivolumab/therapeutic use , Aged , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Gene Expression Regulation, Neoplastic , Gene Expression Profiling , Treatment Outcome
3.
Curr Oncol ; 31(4): 1701-1712, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38668032

ABSTRACT

Immuno-oncology (IO) combination therapy is the first-line treatment for advanced renal cell carcinoma (RCC). However, biomarkers for predicting the response to IO combination therapy are lacking. Here, we investigated the association between the expression of soluble immune checkpoint molecules and the therapeutic efficacy of IO combination therapy in advanced RCC. The expression of soluble programmed cell death-1 (sPD-1), soluble programmed cell death ligand-1 (sPD-L1), soluble PD-L2 (sPD-L2), and lymphocyte activation gene-3 (sLAG-3) was assessed in plasma samples from 42 patients with advanced RCC who received first-line IO combination therapy. All IMDC risk classifications were represented among the patients, including 14.3, 57.1, and 28.6% with favorable, intermediate, and poor risk, respectively. Univariate analysis revealed that prior nephrectomy, sPD-L2 levels, and sLAG-3 levels were significant factors affecting progression-free survival (PFS), whereas multivariate analyses suggested that sPD-L2 and sLAG-3 levels were independent prognostic factors for PFS. In a univariate analysis of the overall survival, prior nephrectomy and sPD-L2 levels were significant factors; no significant differences were observed in the multivariate analysis. No significant correlation was observed between the sPD-L2 and sLAG-3 levels and PD-L2 and LAG-3 expression via immunohistochemistry. In conclusion, sPD-L2 and sLAG-3 expression may serve as a potential biomarker for predicting IO combination therapy efficacy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Male , Female , Kidney Neoplasms/drug therapy , Middle Aged , Aged , Biomarkers, Tumor , Adult , Immunotherapy/methods , Immune Checkpoint Proteins , Aged, 80 and over , Prognosis , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Lymphocyte Activation Gene 3 Protein , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
4.
Front Immunol ; 15: 1331959, 2024.
Article in English | MEDLINE | ID: mdl-38558818

ABSTRACT

Introduction: Immune checkpoint inhibitor-induced inflammatory arthritis (ICI-IA) poses a major clinical challenge to ICI therapy for cancer, with 13% of cases halting ICI therapy and ICI-IA being difficult to identify for timely referral to a rheumatologist. The objective of this study was to rapidly identify ICI-IA patients in clinical data and assess associated immune-related adverse events (irAEs) and risk factors. Methods: We conducted a retrospective study of the electronic health records (EHRs) of 89 patients who developed ICI-IA out of 2451 cancer patients who received ICI therapy at Northwestern University between March 2011 to January 2021. Logistic regression and random forest machine learning models were trained on all EHR diagnoses, labs, medications, and procedures to identify ICI-IA patients and EHR codes indicating ICI-IA. Multivariate logistic regression was then used to test associations between ICI-IA and cancer type, ICI regimen, and comorbid irAEs. Results: Logistic regression and random forest models identified ICI-IA patients with accuracies of 0.79 and 0.80, respectively. Key EHR features from the random forest model included ICI-IA relevant features (joint pain, steroid prescription, rheumatoid factor tests) and features suggesting comorbid irAEs (thyroid function tests, pruritus, triamcinolone prescription). Compared to 871 adjudicated ICI patients who did not develop arthritis, ICI-IA patients had higher odds of developing cutaneous (odds ratio [OR]=2.66; 95% Confidence Interval [CI] 1.63-4.35), endocrine (OR=2.09; 95% CI 1.15-3.80), or gastrointestinal (OR=2.88; 95% CI 1.76-4.72) irAEs adjusting for demographics, cancer type, and ICI regimen. Melanoma (OR=1.99; 95% CI 1.08-3.65) and renal cell carcinoma (OR=2.03; 95% CI 1.06-3.84) patients were more likely to develop ICI-IA compared to lung cancer patients. Patients on nivolumab+ipilimumab were more likely to develop ICI-IA compared to patients on pembrolizumab (OR=1.86; 95% CI 1.01-3.43). Discussion: Our machine learning models rapidly identified patients with ICI-IA in EHR data and elucidated clinical features indicative of comorbid irAEs. Patients with ICI-IA were significantly more likely to also develop cutaneous, endocrine, and gastrointestinal irAEs during their clinical course compared to ICI therapy patients without ICI-IA.


Subject(s)
Antineoplastic Agents, Immunological , Arthritis , Kidney Neoplasms , Melanoma , Humans , Antineoplastic Agents, Immunological/therapeutic use , Retrospective Studies , Arthritis/drug therapy , Melanoma/drug therapy , Kidney Neoplasms/drug therapy
6.
N Engl J Med ; 390(15): 1359-1371, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38631003

ABSTRACT

BACKGROUND: Adjuvant pembrolizumab therapy after surgery for renal-cell carcinoma was approved on the basis of a significant improvement in disease-free survival in the KEYNOTE-564 trial. Whether the results regarding overall survival from the third prespecified interim analysis of the trial would also favor pembrolizumab was uncertain. METHODS: In this phase 3, double-blind, placebo-controlled trial, we randomly assigned (in a 1:1 ratio) participants with clear-cell renal-cell carcinoma who had an increased risk of recurrence after surgery to receive pembrolizumab (at a dose of 200 mg) or placebo every 3 weeks for up to 17 cycles (approximately 1 year) or until recurrence, the occurrence of unacceptable toxic effects, or withdrawal of consent. A significant improvement in disease-free survival according to investigator assessment (the primary end point) was shown previously. Overall survival was the key secondary end point. Safety was a secondary end point. RESULTS: A total of 496 participants were assigned to receive pembrolizumab and 498 to receive placebo. As of September 15, 2023, the median follow-up was 57.2 months. The disease-free survival benefit was consistent with that in previous analyses (hazard ratio for recurrence or death, 0.72; 95% confidence interval [CI], 0.59 to 0.87). A significant improvement in overall survival was observed with pembrolizumab as compared with placebo (hazard ratio for death, 0.62; 95% CI, 0.44 to 0.87; P = 0.005). The estimated overall survival at 48 months was 91.2% in the pembrolizumab group, as compared with 86.0% in the placebo group; the benefit was consistent across key subgroups. Pembrolizumab was associated with a higher incidence of serious adverse events of any cause (20.7%, vs. 11.5% with placebo) and of grade 3 or 4 adverse events related to pembrolizumab or placebo (18.6% vs. 1.2%). No deaths were attributed to pembrolizumab therapy. CONCLUSIONS: Adjuvant pembrolizumab was associated with a significant and clinically meaningful improvement in overall survival, as compared with placebo, among participants with clear-cell renal-cell carcinoma at increased risk for recurrence after surgery. (Funded by Merck Sharp and Dohme, a subsidiary of Merck; KEYNOTE-564 ClinicalTrials.gov number, NCT03142334.).


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adjuvants, Immunologic/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/mortality , Carcinoma, Renal Cell/surgery , Double-Blind Method , Kidney Neoplasms/drug therapy , Kidney Neoplasms/mortality , Kidney Neoplasms/surgery , Antineoplastic Agents, Immunological/administration & dosage , Antineoplastic Agents, Immunological/adverse effects , Antineoplastic Agents, Immunological/therapeutic use , Disease-Free Survival , Combined Modality Therapy , Survival Analysis
7.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1052-1063, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621912

ABSTRACT

The mechanism of total polyphenols of Cydonia oblonga Miller(TPCOM) against kidney cancer was elucidated through a combination of network pharmacology, bioinformatics, and experimental verification. The active polyphenolic compounds from C. oblonga were screened by network pharmacological techniques and kidney cancer-related targets were collected through the database. The differential gene expression analysis was performed on RNA sequencing data from tumor tissue and normal tissue of kidney cancer patients obtained from the Gene Expression Omnibus(GEO) database. The results of network pharmacology predictions and differential gene expression analysis were used to identify the core genes targeted by TPCOM in kidney cancer. Survival analysis was conducted to identify key targets that could impact patient survival, followed by Kyoto Encyclopedia of Genes and Genomes(KEGG) and Gene Ontology(GO) enrichment analyses. Cell proliferation and activity experiments(cell counting kit-8) were conducted using TPCOM at concentrations ranging from 20 to 640 µg·mL~(-1) on 786-O and Renca cells. Additionally, TPCOM at concentrations of 40, 80, and 160 µg·mL~(-1) was applied to kidney cancer cells to assess its effect on cell migration and its regulation of protein expression levels related to the protein kinase B(Akt), mammalian target of rapamycin(mTOR), and phosphoinositide 3-kinase(PI3K) signaling pathways. Network pharmacology predicted eight active polyphenolic compounds from C. oblonga. Survival analysis revealed 15 significantly differentially expressed genes in kidney cancer that were affected by TPCOM and had a significant impact on patient survival. KEGG and GO analysis results indicated that these 15 targets were primarily associated with the PI3K/Akt signaling pathway, cell migration, and proliferation. The results showed that TPCOM could inhibit the proliferation of 786-O and Renca cells, with IC_(50) values of 121.4 and 137.9 µg·mL~(-1), respectively. TPCOM was also found to inhibit the migration of these cells and suppress the PI3K/Akt/mTOR signaling pathway. TPCOM may exert its anti-kidney cancer effects by inhibiting the activation of the PI3K/Akt/mTOR signaling pathway, thereby restraining the proliferation and migration of kidney cancer cells. This study provides a foundation for the research on the anti-tumor effects of natural product C. oblonga, particularly in Xinjiang, and holds significance for further promoting its development and utilization.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , TOR Serine-Threonine Kinases/genetics , Cell Proliferation , Molecular Docking Simulation
8.
AAPS J ; 26(3): 48, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622446

ABSTRACT

Pazopanib is a multi-kinase inhibitor used to treat advanced/metastatic renal cell carcinoma and advanced soft tissue tumors; however, side effects such as diarrhea and hypertension have been reported, and dosage adjustment based on drug concentration in the blood is necessary. However, measuring pazopanib concentrations in blood using the existing methods is time-consuming; and current dosage adjustments are made using the results of blood samples taken at the patient's previous hospital visit (approximately a month prior). If the concentration of pazopanib could be measured during the waiting period for a doctor's examination at the hospital (in approximately 30 min), the dosage could be adjusted according to the patient's condition on that day. Therefore, we aimed to develop a method for rapidly measuring blood pazopanib concentrations (in approximately 25 min) using common analytical devices (a tabletop centrifuge and a spectrometer). This method allowed for pazopanib quantification in the therapeutic concentration range (25-50 µg/mL). Additionally, eight popular concomitant medications taken simultaneously with pazopanib did not interfere with the measurements. We used the developed method to measure blood concentration in two patients and obtained similar results to those measured using the previously reported HPLC method. By integrating it with the point of care and sample collection by finger pick, this method can be used for measurements in pharmacies and patients' homes. This method can maximize the therapeutic effects of pazopanib by dose adjustment to control adverse events.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Sulfonamides , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/secondary , Kidney Neoplasms/chemically induced , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Drug Monitoring , Pyrimidines , Indazoles
9.
J Cell Mol Med ; 28(8): e18290, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38588015

ABSTRACT

Growth hormone inducible transmembrane protein (GHITM), one member of Bax inhibitory protein-like family, has been rarely studied, and the clinical importance and biological functions of GHITM in kidney renal clear cell carcinoma (KIRC) still remain unknown. In the present study, we found that GHITM was downregulated in KIRC. Aberrant GHITM downregulation related to clinicopathological feature and unfavourable prognosis of KIRC patients. GHITM overexpression inhibited KIRC cell proliferation, migration and invasion in vitro and in vivo. Mechanistically, GHITM overexpression could induce the downregulation of Notch1, which acts as an oncogene in KIRC. Overexpression of Notch1 effectively rescued the inhibitory effect induced by GHITM upregulation. More importantly, GHITM could regulate PD-L1 protein abundance and ectopic overexpression of GHITM enhanced the antitumour efficiency of PD-1 blockade in KIRC, which provided new insights into antitumour therapy. Furthermore, we also showed that YY1 could decrease GHITM level via binding to its promoter. Taken together, our study revealed that GHITM was a promising therapeutic target for KIRC, which could modulate malignant phenotype and sensitivity to PD-1 blockade of renal cancer cells via Notch signalling pathway.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Kidney , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Phenotype , Programmed Cell Death 1 Receptor
10.
Curr Opin Oncol ; 36(3): 186-194, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38573208

ABSTRACT

PURPOSE OF REVIEW: This review focuses on special populations poorly represented in current evidence-based practice for metastatic renal cell carcinoma (mRCC). This includes the elderly and frail, patients on immunosuppression or with autoimmune diseases, patients with brain, liver, and/or bone metastases, and RCC with sarcomatoid features. RECENT FINDINGS: Certain populations are poorly represented in current trials for mRCC. Patients with central nervous system (CNS) metastases are often excluded from first-line therapy trials. Modern doublet systemic therapy appears to benefit patients with bone or liver metastases, but data supporting this conclusion is not robust. Post-hoc analyses on patients with sarcomatoid differentiation have shown improved response to modern doublet therapy over historical treatments. The elderly are underrepresented in current clinical trials, and most trials exclude all but high-performing (nonfrail) patients, though true frailty is likely poorly captured using the current widely adopted indices. It is difficult to make conclusions about the efficacy of modern therapy in these populations from subgroup analyses. Data from trials on other malignancies in patients with autoimmune diseases or solid organ transplant recipients on immunosuppression suggest that immune checkpoint inhibitors (ICIs) may still have benefit, though at the risk of disease flare or organ rejection. The efficacy of ICIs has not been demonstrated specifically for RCC in this group of patients. SUMMARY: The elderly, frail, and immunosuppressed, those with tumors having aggressive histologic features, and patients with brain, bone, and/or liver metastases represent the populations least understood in the modern era of RCC treatment.


Subject(s)
Autoimmune Diseases , Carcinoma, Renal Cell , Kidney Neoplasms , Liver Neoplasms , Aged , Humans , Carcinoma, Renal Cell/drug therapy , Kidney Neoplasms/drug therapy , Brain , Liver Neoplasms/drug therapy
11.
Clin Nucl Med ; 49(5): e208-e210, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38574256

ABSTRACT

ABSTRACT: Renal cell carcinoma (RCC) is a leading cause of mortality among genitourinary malignancies with limited therapeutic options. The hematogenous route, lymphatic spread, and direct invasion have been documented in RCC. Usually, metastases are regional lymph nodes, lungs, bone, liver, adrenal glands, contralateral kidney, and brain. Metastases to the rare sites such as skin, breast, head and neck were documented in the literature. In the present case, we describe the synchronous metastases to the base of the tongue and thyroid gland in RCC and the response to sunitinib therapy on 18F-FDG PET/CT.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Thyroid Neoplasms , Humans , Carcinoma, Renal Cell/diagnostic imaging , Carcinoma, Renal Cell/drug therapy , Positron Emission Tomography Computed Tomography , Fluorodeoxyglucose F18 , Sunitinib/therapeutic use , Follow-Up Studies , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Kidney Neoplasms/diagnostic imaging , Kidney Neoplasms/drug therapy , Tongue/pathology
12.
Int J Mol Sci ; 25(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38612943

ABSTRACT

Clear cell renal carcinoma (ccRCC), the most common subtype of renal cell carcinoma, has the high heterogeneity of a highly complex tumor microenvironment. Existing clinical intervention strategies, such as target therapy and immunotherapy, have failed to achieve good therapeutic effects. In this article, single-cell transcriptome sequencing (scRNA-seq) data from six patients downloaded from the GEO database were adopted to describe the tumor microenvironment (TME) of ccRCC, including its T cells, tumor-associated macrophages (TAMs), endothelial cells (ECs), and cancer-associated fibroblasts (CAFs). Based on the differential typing of the TME, we identified tumor cell-specific regulatory programs that are mediated by three key transcription factors (TFs), whilst the TF EPAS1/HIF-2α was identified via drug virtual screening through our analysis of ccRCC's protein structure. Then, a combined deep graph neural network and machine learning algorithm were used to select anti-ccRCC compounds from bioactive compound libraries, including the FDA-approved drug library, natural product library, and human endogenous metabolite compound library. Finally, five compounds were obtained, including two FDA-approved drugs (flufenamic acid and fludarabine), one endogenous metabolite, one immunology/inflammation-related compound, and one inhibitor of DNA methyltransferase (N4-methylcytidine, a cytosine nucleoside analogue that, like zebularine, has the mechanism of inhibiting DNA methyltransferase). Based on the tumor microenvironment characteristics of ccRCC, five ccRCC-specific compounds were identified, which would give direction of the clinical treatment for ccRCC patients.


Subject(s)
Carcinoma, Renal Cell , Deep Learning , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Endothelial Cells , Algorithms , Single-Cell Analysis , Antimetabolites , DNA Modification Methylases , Drug Discovery , Kidney Neoplasms/drug therapy , DNA , Tumor Microenvironment
13.
J Mater Chem B ; 12(16): 4039-4052, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38591157

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) is a disease with high incidence and poor prognosis. The conventional treatment involves radiotherapy and chemotherapy, but chemotherapeutic agents are often associated with side effects, i.e., cytotoxicity to nontumor cells. Therefore, there is an urgent need for the development of novel therapeutic strategies for ccRCC. We synthesized spherical P/TiO2 nanoparticles (P/TiO2 NPs) by vaporization phosphorization (VP). X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS) analyses confirmed that the anatase TiO2 surface was successfully doped with phosphorus and produced a large number of oxygen vacancies (OV). Serving as a photosensitizer, P/TiO2 NPs not only extended the photoresponse range to the near-infrared II region (NIR II) but also introduced a donor energy level lower than the TiO2 conduction band, narrowing the band gap, which could facilitate the migration of photogenerated charges and trigger the synergistic treatment of photodynamic therapy (PDT) and photothermal therapy (PTT). During NIR irradiation in vitro, the P/TiO2 NPs generated local heat and various oxygen radicals, including 1O2, ˙O2-, H2O2, and ˙OH, which damaged the ccRCC cells. In vivo, administration of the P/TiO2 NPs + NIR reduced the tumor volume by 80%, and had the potential to inhibit tumor metastasis by suppressing intratumor neoangiogenesis. The P/TiO2 NPs showed superior safety and efficacy relative to the conventional chemotherapeutic agent used in ccRCC treatment. This study introduced an innovative paradigm for renal cancer treatment, highlighting the potential of P/TiO2 NPs as safe and effective nanomaterials and presenting a compelling new option for clinical applications in anticancer therapy.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Nanocomposites , Phosphorus , Photochemotherapy , Photothermal Therapy , Titanium , Titanium/chemistry , Titanium/pharmacology , Phosphorus/chemistry , Humans , Animals , Nanocomposites/chemistry , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Mice , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Photosensitizing Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Cell Survival/drug effects , Cell Proliferation/drug effects , Mice, Nude , Mice, Inbred BALB C , Drug Screening Assays, Antitumor , Particle Size , Cell Line, Tumor
14.
J Cancer Res Clin Oncol ; 150(4): 183, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594593

ABSTRACT

PURPOSE: Renal cell carcinoma is an aggressive disease with a high mortality rate. Management has drastically changed with the new era of immunotherapy, and novel strategies are being developed; however, identifying systemic treatments is still challenging. This paper presents an update of the expert panel consensus from the Latin American Cooperative Oncology Group and the Latin American Renal Cancer Group on advanced renal cell carcinoma management in Brazil. METHODS: A panel of 34 oncologists and experts in renal cell carcinoma discussed and voted on the best options for managing advanced disease in Brazil, including systemic treatment of early and metastatic renal cell carcinoma as well as nonclear cell tumours. The results were compared with the literature and graded according to the level of evidence. RESULTS: Adjuvant treatments benefit patients with a high risk of recurrence after surgery, and the agents used are pembrolizumab and sunitinib, with a preference for pembrolizumab. Neoadjuvant treatment is exceptional, even in initially unresectable cases. First-line treatment is mainly based on tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs); the choice of treatment is based on the International Metastatic Database Consortium (IMCD) risk score. Patients at favourable risk receive ICIs in combination with TKIs. Patients classified as intermediate or poor risk receive ICIs, without preference for ICI + ICIs or ICI + TKIs. Data on nonclear cell renal cancer treatment are limited. Active surveillance has a place in treating favourable-risk patients. Either denosumab or zoledronic acid can be used for treating metastatic bone disease. CONCLUSION: Immunotherapy and targeted therapy are the standards of care for advanced disease. The utilization and sequencing of these therapeutic agents hinge upon individual risk scores and responses to previous treatments. This consensus reflects a commitment to informed decision-making, drawn from professional expertise and evidence in the medical literature.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology , Latin America , Consensus , Sunitinib
15.
Arch Esp Urol ; 77(2): 119-128, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38583003

ABSTRACT

BACKGROUND: Renal cell carcinoma (RCC) is one of the most common malignancies of the urinary system and ferroptosis is considered as a promising therapeutic approach for treating RCC. Ginsenoside Rh4 (Rh4) was proved to have anticancer properties and play roles in ferroptosis. This study aimed to investigate the potential of ginsenoside Rh4 (Rh4) in enhancing the sensitivity of renal cell carcinoma (RCC) cells to ferroptosis and to elucidate the underlying mechanisms. METHODS: RCC cell lines of 786-O and ACHN were treated with RAS-selective lethal 3 (RSL3) and/or Rh4. Cell-viability assays were used to determine how Rh4 affected the sensitivity of RCC cells to RSL3-induced ferroptosis. Quantitative real-time polymerase chain reaction was conducted to examine the levels of ferroptosis-related genes. Additionally, the knockdown of nuclear factor E2-related factor 2 (NRF2) was performed to investigate the role of NRF2 in mediating the effects of Rh4. RESULTS: RSL3 suppressed the progression of RCC cells by inducing ferroptosis. Furthermore, Rh4 led to more RCC sensitivity to ferroptosis induced by RSL3. Rh4 downregulated the ferroptosis-related gene expression including superoxide dismutase 1 (p < 0.01), glutathione peroxidase 4 (p < 0.01), and catalase (p < 0.01), which was attenuated by NRF2 knockdown. This finding suggested that Rh4 exerted its sensitising effect on ferroptosis through the NRF2 pathway. CONCLUSIONS: Rh4 made RCC cells more sensitive to ferroptosis by inhibiting the NRF2 signaling and suppressing the expression of antioxidant enzymes. Therefore, combining Rh4 with ferroptosis-inducing reagents to treat RCC had potential therapeutic application.


Subject(s)
Carcinoma, Renal Cell , Ferroptosis , Ginsenosides , Indans , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , NF-E2-Related Factor 2 , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics
16.
J Immunother Cancer ; 12(4)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38604810

ABSTRACT

BACKGROUND: As part of a partitioned survival analysis, treatment-free survival (TFS) can characterize the overall survival time patients spend between the cessation of immunotherapy and the start of subsequent therapy; both with and without toxicity. Significant TFS was reported for the nivolumab/ipilimumab arms of the CheckMate 067 and 214 trials for patients with advanced melanoma or renal cell carcinoma (aRCC), respectively, where immunotherapy was often halted for toxicity rather than a predefined treatment endpoint. We therefore sought to assess TFS in the HCRN GU16-260 trial, which was designed to reduce toxicity and cap immunotherapy duration. METHODS: Data were analyzed from 128 patients with clear-cell aRCC treated with first-line nivolumab monotherapy for up to 2 years. Salvage nivolumab/ipilimumab for up to 1 year was provided to eligible patients with disease progression at any point or stable disease at 48 weeks (29% of patients). TFS was defined as the area between Kaplan-Meier curves for a time from registration to protocol therapy cessation and for a time from registration to subsequent systemic therapy initiation or death, estimated from 36-month mean times. The time on or off protocol treatment with grade 3+treatment-related adverse events (TRAEs) was also captured. RESULTS: At 36 months from enrollment, 68.3% of patients were alive: 96.8% of International Metastatic RCC Database Consortium (IMDC) favorable-risk patients and 56.6% of those with intermediate/poor-risk, respectively. The 36-month mean time on protocol therapy was 11.5 months including 0.6 months with grade 3+TRAEs (16.0 months for favorable-risk patients and 9.6 months for intermediated/poor-risk patients). The 36-month mean TFS for the whole population was 9.4 months (12.9 months including 1.5 months with grade 3+TRAEs for favorable-risk and 8.0 months including 1.0 months with grade 3+TRAEs for intermediate/poor-risk). At 36 months, 65.6% of favorable-risk patients and 27.1% of intermediate/poor-risk patients were alive and subsequent systemic treatment-free. CONCLUSIONS: Nivolumab monotherapy with salvage nivolumab/ipilimumab in non-responders is an active treatment approach in treatment-naïve patients with aRCC and, similar to nivolumab/ipilimumab in CheckMate 214, results in substantial TFS and toxicity-free TFS. TFS was greatest in patients with favorable-risk disease, supporting the use of an immunotherapy-only regimen in this population.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Melanoma , Humans , Carcinoma, Renal Cell/drug therapy , Nivolumab/pharmacology , Nivolumab/therapeutic use , Ipilimumab/adverse effects , Kidney Neoplasms/drug therapy , Kidney Neoplasms/pathology
17.
Commun Biol ; 7(1): 426, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589567

ABSTRACT

Wilms tumor (WT) is the most common renal malignancy of childhood. Despite improvements in the overall survival, relapse occurs in ~15% of patients with favorable histology WT (FHWT). Half of these patients will succumb to their disease. Identifying novel targeted therapies remains challenging in part due to the lack of faithful preclinical in vitro models. Here we establish twelve patient-derived WT cell lines and demonstrate that these models faithfully recapitulate WT biology using genomic and transcriptomic techniques. We then perform loss-of-function screens to identify the nuclear export gene, XPO1, as a vulnerability. We find that the FDA approved XPO1 inhibitor, KPT-330, suppresses TRIP13 expression, which is required for survival. We further identify synergy between KPT-330 and doxorubicin, a chemotherapy used in high-risk FHWT. Taken together, we identify XPO1 inhibition with KPT-330 as a potential therapeutic option to treat FHWTs and in combination with doxorubicin, leads to durable remissions in vivo.


Subject(s)
Hydrazines , Kidney Neoplasms , Triazoles , Wilms Tumor , Humans , 60611 , Active Transport, Cell Nucleus , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Cell Line, Tumor , Apoptosis , Neoplasm Recurrence, Local , Doxorubicin/pharmacology , Wilms Tumor/drug therapy , Wilms Tumor/genetics , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , ATPases Associated with Diverse Cellular Activities/metabolism , Cell Cycle Proteins/metabolism
18.
J Biochem Mol Toxicol ; 38(4): e23689, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613465

ABSTRACT

Renal cell carcinoma (RCC) is the most common kidney cancer with high mortality rate. Pazopanib has been approved for the treatment of RCC. However, the underlying mechanism is not clear. Here, we report a novel finding by showing that treatment with Pazopanib could promote cellular senescence of the human RCC cell line ACHN. Cells were stimulated with 5, 10, and 20 µM Pazopanib, respectively. Cellular senescence was measured using senescence-associated ß-galactosidase (SA-ß-Gal) staining. Western blot analysis and real-time polymerase chain reaction were used to measure the mRNA and protein expression of nuclear factor E2-related factor 2 (Nrf2), γH2AX, human telomerase reverse transcriptase (hTERT), telomeric repeat binding factor 2 (TERF2), p53 and plasminogen activator inhibitor (PAI). First, we found that exposure to Pazopanib reduced the cell viability of ACHN cells. Additionally, Pazopanib induced oxidative stress  by increasing the production of reactive oxygen species, reducing the levels of glutathione peroxidase, and promoting nuclear translocation of Nrf2. Interestingly, Pazopanib exposure resulted in DNA damage by increasing the expression of γH2AX. Importantly, Pazopanib increased cellular senescence and reduced telomerase activity. Pazopanib also reduced the gene expression of hTERT but increased the gene expression of TERF2. Correspondingly, we found that Pazopanib increased the expression of p53 and PAI at both the mRNA and protein levels. To elucidate the underlying mechanism, the expression of Nrf2 was knocked down by transduction with Ad- Nrf2 shRNA. Results indicate that silencing of Nrf2 in ACHN cells abolished the effects of Pazopanib in stimulating cellular senescence and reducing telomerase activity. Consistently, knockdown of Nrf2 restored the expression of p53 and PAI in ACHN cells. Based on these results, we explored a novel mechanism whereby which Pazopanib displays a cytotoxicity effect in RCC cells through promoting cellular senescence mediated by Nrf2.


Subject(s)
Carcinoma, Renal Cell , Indazoles , Kidney Neoplasms , Pyrimidines , Sulfonamides , Telomerase , Humans , Carcinoma, Renal Cell/drug therapy , NF-E2-Related Factor 2 , Telomerase/genetics , Tumor Suppressor Protein p53/genetics , Kidney Neoplasms/drug therapy , RNA, Messenger
19.
BMC Pulm Med ; 24(1): 123, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459507

ABSTRACT

BACKGROUND: Pembrolizumab is among the approved treatments for a variety of cancer types, including clear cell renal cell carcinoma (ccRCC). It has contributed to enhancing the prognosis of renal cell carcinoma. However, it is essential to be aware of the numerous potential immune-related side effects associated with its use. CASE PRESENTATION: A 69-year-old patient with a history of metastatic renal cell carcinoma has been undergoing treatment with Pembrolizumab, an immune checkpoint inhibitor. The medication has led to the development of a sarcoid-like reaction, initially misinterpreted as cancer recurrence and progression. Additionally, the patient has experienced new-onset hypothyroidism, which has been attributed to the immunotherapy. CONCLUSION: Clinicians, including oncologists, endocrinologists, and radiologists, should maintain a high level of suspicions and awareness regarding the potential adverse events associated with newly introduced immunotherapies like pembrolizumab. This knowledge is crucial for the accurate diagnosis and appropriate management of patients receiving these treatments.


Subject(s)
Antineoplastic Agents, Immunological , Carcinoma, Renal Cell , Kidney Neoplasms , Sarcoidosis , Humans , Aged , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/chemically induced , Immune Checkpoint Inhibitors/adverse effects , Antineoplastic Agents, Immunological/adverse effects , Kidney Neoplasms/drug therapy , Neoplasm Recurrence, Local
20.
Mol Biol Rep ; 51(1): 379, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38429605

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a form of kidney cancer characterized by dysregulated angiogenesis and multidrug resistance. Hypoxia-induced tumor progression plays a crucial role in ccRCC pathogenesis. Beta-hydroxybutyrate (BHB) and quercetin (QCT) have shown potential in targeting angiogenesis and drug resistance in various cancer types. This study investigates the combined effects of BHB and QCT in hypoxia-induced Caki-1 cells. METHODS: Caki-1 cells were subjected to normoxic and hypoxic conditions and treated with BHB, QCT, or a combination of both. Cell-viability was assessed using the MTT assay, and mRNA expression levels of key angiogenesis-related genes (HIF-1α/2α, VEGF, Ang-1, Ang-2, and MDR4) were quantified through real-time PCR during 24 and 48 h. RESULTS: BHB and QCT treatments, either alone or in combination, significantly reduced cell-viability in Caki-1 cells (p < 0.05). Moreover, the combined therapy demonstrated a potential effect in downregulating the expression of angiogenesis-related genes and MDR4 in hypoxia-induced cells, with a marked reduction in HIF-1α/2α, VEGF, Ang-1, and MDR4 expression (p < 0.05). The expression of Ang-2 increases significantly in presence of BHB combined QCT treatment. CONCLUSION: This study highlights the promising potential of a combination therapy involving BHB and QCT in mitigating angiogenesis and MDR4 expression in hypoxia-induced ccRCC cells. These findings support further investigation into the underlying mechanisms and warrant clinical studies to evaluate the therapeutic value of this combined treatment for ccRCC patients. This research provides new insights into addressing the challenges posed by angiogenesis and drug resistance in ccRCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , 3-Hydroxybutyric Acid , Quercetin/pharmacology , Quercetin/therapeutic use , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , 60489 , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Hypoxia , Drug Resistance, Multiple
SELECTION OF CITATIONS
SEARCH DETAIL
...